Class-based modelling
[bookmark: _GoBack]Class-based modelling in software engineering involves the use of classes and objects to represent the structure and behavior of a software system. This approach is central to object-oriented programming (OOP) and is widely used in software design and development. Here's a breakdown of class-based modeling:
1. Classes: Classes are blueprints or templates for creating objects in object-oriented programming languages such as Java, C++, Python, and C#. A class encapsulates data (attributes or properties) and behavior (methods or functions) related to a specific concept or entity within the system. For example, in a banking application, you might have classes such as Account, Customer, and Transaction.
2. Objects: Objects are instances of classes created at runtime. They represent concrete entities with their own state (values of attributes) and behavior (methods or functions). For example, if you create an object of the Account class, it might represent a specific bank account with its balance, account number, owner, etc.
3. Encapsulation: Encapsulation is the principle of bundling data and methods within a class and restricting access to the internal state of the object. This helps in maintaining the integrity of the data and controlling how it is accessed and modified.
4. Inheritance: Inheritance is a mechanism in OOP that allows a class (subclass or derived class) to inherit properties and behavior from another class (superclass or base class). This promotes code reuse and facilitates the creation of hierarchical relationships between classes. For example, you might have a SavingsAccount class that inherits from the Account class.
5. Polymorphism: Polymorphism allows objects of different classes to be treated uniformly through a common interface. This enables flexibility and extensibility in software design by allowing different implementations of the same interface to be used interchangeably. Polymorphism is often achieved through method overriding and method overloading.
6. Association: Association represents relationships between classes, where one class is related to another in some way. Associations can be one-to-one, one-to-many, or many-to-many, and they are typically implemented using references or pointers between objects. For example, in a library system, a Book class might be associated with a Library class through a "contains" relationship.
Class-based modeling provides a powerful and flexible approach to software design, allowing developers to model real-world entities and their interactions in a structured and intuitive manner. By organizing code into classes and leveraging principles such as encapsulation, inheritance, and polymorphism, developers can create modular, maintainable, and scalable software systems.

